A theorem on units of integral group rings
نویسندگان
چکیده
منابع مشابه
On the Torsion Units of Some Integral Group Rings∗
It is shown that any torsion unit of the integral group ring ZG of a finite group G is rationally conjugate to a trivial unit if G = P o A with P a normal Sylow p-subgroup of G and A an abelian p′-group (thus confirming a conjecture of Zassenhaus for this particular class of groups). The proof is an application of a fundamental result of Weiss. It is also shown that the Zassenhaus conjecture ho...
متن کاملSome Results on Hypercentral Units in Integral Group Rings
In this note we investigate the hypercentral units in integral group rings ZG, where G is not necessarily torsion. One of the main results obtained is the following (Theorem 3.5): if the set of torsion elements of G is a subgroup T of G and if Z2(U) is not contained in CU (T ), then T is either an Abelian group of exponent 4 or a Q∗ group. This extends our earlier result on torsion group rings.
متن کاملCentral Units of Integral Group Rings of Nilpotent Groups
In this paper a finite set of generators is given for a subgroup of finite index in the group of central units of the integral group ring of a finitely generated nilpotent group. In this paper we construct explicitly a finite set of generators for a subgroup of finite index in the centre Z(U(ZG)) of the unit group U(ZG) of the integral group ring ZG of a finitely generated nilpotent group G. Ri...
متن کاملTorsion units in integral group rings of Janko simple groups
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.
متن کاملSubgroup Isomorphism Problem for Units of Integral Group Rings
The Subgroup Isomorphism Problem for Integral Group Rings asks for which finite groups U it is true that if U is isomorphic to a subgroup of V(ZG), the group of normalized units of the integral group ring of the finite group G, it must be isomorphic to a subgroup of G. The smallest groups known not to satisfy this property are the counterexamples to the Isomorphism Problem constructed by M. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1987
ISSN: 0022-4049
DOI: 10.1016/0022-4049(87)90126-5